## Norman Disney& Young

Presentation to AIRAH 18<sup>th</sup> August 2010

# VENTILATION OF INDOOR AQUATIC CENTRES

Presented by Jeff Dusting



#### INTRODUCTION

#### This presentation will cover

- Why ventilation and heating is so important
- Calculations and Formulas
- Design Conditions
- Sample Calculations / Rules of thumb
- Different Ventilation Configurations
- Different Heating Configurations
- Equipment selection and sizing





## Why worry?

#### What Goes on in a Natatorium?





## Why Worry?

- Occupant Comfort and Health
- Air Quality (chloramine levels)
- Condensation on cold surfaces





#### Mass / Heat Transfer Rates

Look Up in ASHRAE under Places of Assembly section 4.6 of the 2007 HVAC Applications Handbook

$$W_p = (A/Y) (p_w - p_a)(0.089 + 0.0782.V) F_a$$

 $p_w$  = water vapour pressure at  $T_w$ 

 $p_a$  = partial water vapour pressure in the air



Mass / Heat Transfer Rates

Driving force for evaporation rates and water heat loss is

$$(p_w - p_a)$$

 $p_w$  = water vapour pressure at  $T_w$ 

 $p_a = \text{water vapour pressure at } T_a \times \text{RH}$ 



## Determining p<sub>w</sub> and p<sub>a</sub>

At 30°C  $p_w = 4.25 \text{ kPa}$ 

At 25°C  $p_w = 3.17 \text{ kPa}$ 

At 35°C  $p_w = 5.63 \text{ kPa}$ 







Alternative formulae for Evaporation Rate:

•
$$W_p = (A/Y) (p_w - p_a)(0.089 + 0.0782.V) (kg/s)$$

- • $W_p = 15 A (p_w p_a) F_a p_w in bar, W_p in kg/hr, F_a 0.5 to 1.5$
- •Heat Loss (W) =  $16.3 \times (3.1 + 4.1 \text{ V}) \times (p_w p_a)$ , but activity factors higher -0.8 to 2.0.



#### **Ventilation Rates**

#### AS 1668.2

- 3.5 m<sup>2</sup> per person and 10 L/s/person OR 2.86 l/s/m<sup>2</sup> for pool deck and pool area
- 1.5 m<sup>2</sup> per person and 10 L/s/person OR 6.66 l/s/m<sup>2</sup> for spectator areas

#### **Humidity Control**

• 
$$Q = W_p/\rho (W_{ai} - W_{ao})$$



## Ventilation Rates – Determining Wai and Wao







Norman Disney& Young

Fig.1.9 Air Condition Chart - Perth

## **Design Criteria – Internal Air**

#### Occupant Comfort / Health

- Bather comfort 30 to 32 °C and 65 % RH
- Life Guard comfort 26 to 28 °C and 50 % RH
- Spectators 24 °C and 50% RH

#### **Energy Use**

- Higher the temperature the more air side heating required
- Higher the temperature the less water side heating required

#### Water Use

- Higher the temperature the less evaporation and less water use
- The higher the RH the less evaporation and less water use



## **Design Criteria – Internal Air**

#### Condensation

- The higher the air temperature the lower the condensation likelihood
- The higher the internal air temperature the greater the ability to control humidity with a given air change rate
- The lower the relative humidity the lower the condensation likelihood



## Design Criteria – Pool Water Temperature

#### **Bather Comfort**

| • | Competitio | n Pool | 24 to 26 °C |
|---|------------|--------|-------------|
|---|------------|--------|-------------|



## Design Criteria – Pool Water Temperature

#### Impact on ventilation

An increase in pool temperature increases

- Evaporation Rate
- Water heat loss and hence energy use
- Need to increase ventilation rate to maintain RH



## Design Criteria – External Temperature / %RH

- Primarily concerned with Heating so we consider 24 hour Winter Design conditions. This determines minimum outside air quantity / check against AS 1668 requirements.
- Review impact of Summer Design on Pool Hall Conditions.
  Absolute humidity in pool hall will have to be higher unless cooling is provided
- Check what external design conditions will allow internal design criteria to be met. Check that internal dew point is not too far below the external dry bulb



## Recommended Design Criteria

#### **Indoor Temperature**

- Within 1-2°C of water temperature
- Generally in the 28 to 30°C range higher in Hydrotherapy areas if possible
- If lower bather comfort and ability to control RH and condensation deteriorate
- If higher then slightly higher heating energy required (the ratio of heat to water / air changes)



## Recommended Design Criteria

#### **Indoor Humidity**

- In the range 50 to 65% RH
- If lower, then evaporation rate increases and water heating requirement increases, bather comfort decreases, spectator comfort improves
- If higher, then risk of condensation on cold surfaces increases, and comfort for non bathing patrons becomes unpleasant



## Recommended Design Criteria

#### **Ventilation Rates**

- Minimum determined by internal and external winter design criteria as well as AS 1668.1 – typically aorund 2.5 to 3.0 air changes or 3.0 l/s/m<sup>2</sup>
- Maximum between 5 and 8 air changes (rule of thumb is around 6)
- The minimum rate also depends on the quality of water treatment and extent of water features and associated evaporation rate
- If lower, condensation and poor air quality is likely
- The higher the better, but capital and energy costs obviously increase accordingly



## **CONFUSED?**

#### Some Examples:

Consider the Following

- •Indoor Leisure Pool 25 x 15 m
- •Pool Hall Size 30 x 25 x 5 m high
- Perth External Design Conditions
- •Pool Temperature 30 °C
- •Air Temperature 29 °C
- •Air Humidity 60% RH



Pool Area =  $25 \times 15 = 375 \text{ m}$ 2

Evaporation Rate? Use Activity Factor of 1.0 for leisure pool.

$$W_p = (A/Y) (p_w - p_a)(0.089 + 0.0782.V)$$
  
Take V as 0.15 m/s, Y = 2400 kJ/kg,  $p_w = 4.25$  kPa,  $p_a = p_{Ta} \times \%RH = 4.10 \times 0.60 = 2.46$  kPa

 $W_p = 375 \times 1.79 \times 0.1 / 2400 = 0.028 \text{ kg/s} \text{ or } 1.7 \text{ L/min or}$ 

2,500 L/day Also equates to 67 kW heat loss from water



**Determine Ventilation Rate** 

Pool Hall Volume is  $30 \times 25 \times 5 = 3750 \text{ m}$ 

Rule of Thumb gives 6 air changes =  $3750 \times 6 / 3.6 = 6250 \text{ L/s}$ 

AS 1668.1 regulation gives minimum of  $30 \times 25 / 3.5 \times 10 = 2142 \text{ L/s}$ 



Check Ventilation rate for Humidity Control (Winter)

Use 
$$Q = W_p/\rho (W_{ai} - W_{ao})$$

$$W_p = 0.028 \text{ kg/s},$$

 $W_{ai} = 15.4 \text{ g/kg for } 29^{\circ}\text{C} \text{ and } 60 \% \text{ RH (from psyc}$ 

 $W_{ao} = 5.7 \text{ g/kg for } 7^{\circ}\text{C} \text{ and } 90 \% \text{ RH (from psyc)}$ 

$$Q = 0.028 / 1.2 (0.0154 - 0.0057) = 2.4 \text{ m}^3/\text{s} = 2,400 \text{ l/s}$$





Norman Disney& Young

Fig.1.9 Air Condition Chart - Perth

Check Ventilation rate for Humidity Control (Mid Season Summer)

Use 
$$Q = W_p/\rho (W_{ai} - W_{ao})$$

$$W_p = 0.028 \text{ kg/s}$$
,  $W_{ai} = 15.4 \text{ g/kg for } 29^{\circ}\text{C} \text{ and } 60 \text{ % RH (from psyc)}$ 

 $W_{ao} = 11.8 \text{ g/kg for } 20.0^{\circ}\text{C} \text{ and } 80 \% \text{ RH (from psyc)}$ 

Q = 0.028 / 1.2 (0.0154 - 0.0118) = 6.48 m<sup>3</sup>/s = 6,480 l/s (a bit more than 6 air changes)

NOTE: RESULT IS SAME FOR 36.6/22.4 Ambient



## 34°C Pool Example with Air at 26°C

#### Calculate Evaporation Rate

This time  $p_w = 5.40$  kPa at water temp of 34°C instead of 4.25 kPa with water at 30.

And 
$$p_a = p_{Ta} \times \%RH = 3.4 \times 0.60 = 2.04$$
 instead of 2.46 kPa

So 
$$(p_w - p_a) = 3.36$$
 instead of 1.79 kPa

$$W_p = 375 \times 3.36 \times 0.1 / 2400 = 0.0525 \text{ kg/s}$$
 instead of 0.028 kg/s



## 34°C Pool Example with Air at 26°C

Check Ventilation rate for Humidity Control (Winter)

Use 
$$Q = W_p/\rho (W_{ai} - W_{ao})$$

$$W_p = 0.0525 \text{ kg/s}$$
,  $W_{ai} = 12.8 \text{ g/kg for } 26^{\circ}\text{C} \text{ and } 60 \text{ \% RH (from psyc}$ 

$$W_{ao} = 5.7 \text{ g/kg for } 7^{\circ}\text{C} \text{ and } 90 \% \text{ RH (from psyc)}$$

$$Q = 0.0525 / 1.2 (0.0128 - 0.0057) = 6.162 m3/s = 6,162 l/s$$



## 34°C Pool Example with Air at 26°C

Check Ventilation rate for Humidity Control (Mid Season / Summer)

Use 
$$Q = W_p/\rho (W_{ai} - W_{ao})$$

$$W_p = 0.0525 \text{ kg/s}$$
,  $W_{ai} = 12.8 \text{ g/kg for } 26^{\circ}\text{C} \text{ and } 60 \text{ % RH (from psyc})$ 

$$W_{ao} = 11.8 \text{ g/kg for } 25^{\circ}\text{C} \text{ and } 60 \% \text{ RH (from psyc)}$$

$$Q = 0.0525 / 1.2 (0.0128 - 0.0118) = 43.750 m3/s = 43,750 l/s (OR 42 airchanges!$$

#### **VENTILATION CONFIGURATIONS**

#### Items to be Considered

- Humidity Control
  - VAV systems
  - Recirculation of air
  - Dehumidification cycles
- Air Distribution
  - Get warm air onto glass
  - Keep velocities across water and concourse low
  - Removal of heavy chloramines at point of generation
- Relationship to adjacent spaces
  - Pressure differential













#### **HEATING CONFIGURATIONS**

#### Natatoriums require heating as follows

- Pool Water
  - Loss to air
  - Evaporation Loss
  - Make Up Water
  - Radiant Loss to sky (if not indoor)
  - Skin loss (normally insignificant)
- •Air
- Where ambient is less than internal design criteria (outside air load)
- Skin loss
- Loss to water (if air warmer than water)



#### **POOL WATER HEAT LOSS**

Loss to Air;

$$q_c = (3.1 + 4.1 \text{ V}) (T_w - T_A)$$

**Evaporation Loss**;

$$q_e = 16.3 (3.1 + 4.1 \text{ V}) (p_w - p_a)$$
 OR Use Evap rate.



### AIRSIDE HEAT LOSS

Outside Air Load

$$q = SAQ \times 1.213 \times (T_{oa} - T_{ia})$$

Skin Load

$$q = Area \times U factor \times (T_{oa} - T_{ia})$$

Loss to water (as per water calcs)



#### **ENERGY SOURCES**

- Hot Water Boillers
  - Heat Exchangers to pool water
  - Heating coils to air

Electric Resistance (EVIL!)

- Electric Heat Pumps
  - Packaged Units (Air and Water or combined)
  - Heat Reclaim units (Many different types)



### **ENERGY SOURCES**

- Geothermal
  - Water available at around 45°C at 800 m depth
  - Costly usually over (\$1 M)
  - Risky
  - Water is Corrosive or fouls equipment
  - Don't forget about pump energy use



### **ENERGY SOURCES**

#### Solar

- Reasonable for heating pool water harder for air
- Need space on roof
- No Real impact in Winter
- Co Generation
  - Depends on good gas price with respect to electricity
  - Beware of maintenance costs



# **HEAT RECLAIM**



# **HEAT PUMP HEAT RECOVERY**



# AIR TO AIR HEAT EXCHANGER



# WATER COOLED HEAT RECLAIM UNITS



## AIR HANDLING SIZING

Select air handlers to handle Supply air quantity from minimum ventilation rate to maximum (6 – 8 air changes)

Heating coils to suit full heating requirement (assume heat reclaim is not operational)



### AIR HANDLING EQUIPMENT SELECTION

- PACKAGED EQUIPMENT WITH WATER COILS
- PACKAGED EQUIPMENT WITH DX COILS
- **•BUILT UP AIR HANDLERS**
- •EXHAUST AIR SYSTEMS NEED TO HAVE CORROSION RESISTANCE (Bitumastic Paint or 2 pack polyesters or epoxies)
- •FANS RUN CONTINUOUSLY SO GOOD BEARINGS

## **HEATING EQUIPMENT SELECTION**

### Boilers

- Comparatively Cheap First Cost
- Select for warm up load to get pool up to temperature at around 0.5 deg C / hr
- Can then usually provide both ongoing water and air heating requirements



### **HEATING EQUIPMENT SELECTION**

### Air to Water Heat Pumps

- More Expensive than boilers usually 6 10 year pay back depending on "spark gap"
- COP generally around 5
- COP drops to 2 to 3 during cold ambient unless heat rejection is to exhaust air
- Most efficient for water heating



### **HEATING EQUIPMENT SELECTION**

Water to Water Heat Pumps (Chillers)

- More Expensive than air cooled packages
- COP generally around 6
- Can provide Cooling of air space as well

