Integrated Energy System - Yarra City Council

Heat Pump Technical Evaluation

Richmond Recreation Centre

Yarra

Luke Hardy Manuel Siegrist Derek Harbison Stefan Jensen Principal Consultant – SmartConsult Consultant – SmartConsult Consultant – SmartConsult Director – Scantec

1. General Information

SmartConsultSuite 201 – 36 Laver DriveRobina, 4226 QLDE:Lmhardy@smartconsult.com.auE:derek@smartconsult.com.auW:www.smartconsult.com.auT:1300 344 388ABN72 442 582 258

1.1 Project Partners

Parties	Roles	People	
Yarra City Council	Project Sponsor	Amna Abdalla	
SmartConsult	Principal Consultant	Luke M Hardy	
Scantec	Director	Stefan Jensen	

1.2 Acknowledgements

Project concept and sponsorship

Amna Abdalla – Yarra City Council

System concept and design

Stefan Jensen - Scantec Refrigeration Technologies Luke Meredith Hardy - SmartConsult Derek Harbison – SmartConsult

Business analysis, modelling and report writing

Manuel Siegrist - SmartConsult

Heat pump energy analysis

Rob Paul, Technical Sales Engineer - Johnson Controls International

Heat pump maintenance data

Graham Taylor, Service Manager - Scantec Refrigeration Technologies

SCADA control system design

David Hill - Scantec Refrigeration Technologies

1.3 Glossary

Abbreviation or Acronym	Description
СОР	Coefficient of Performance
CO ₂ -e	CO ₂ equivalent
GWP	Global Warming Potential
kWh	Kilowatt hours of energy
kW	A thousand watts of electrical or thermal power
LCA	Low Charge Ammonia
SEC	Specific Energy Consumption- measured in kWh per cubic metre P.A.
SCADA	Supervisory control and data acquisition, a computer system for gathering and analysing real time data.

1.4 Document History

Revision	Description	Author	Checked	Approved	Date
А	Issued for Approval	LMH, SJ & DH	LMH	АА	10/01/2020
В	Issued for Approval	MS	DH, LMH	АА	24/01/2020
С	Issued for Approval	MS	DH, LMH	AA	03/02/2020
D	Issued for Approval	MS	DH, LMH	АА	15/02/2020
Е	Issued for Approval	MS	DH, LMH	AA	25/02/2020

Table of Contents

1. General Information	2
1.1 Project Partners	2
1.2 Acknowledgements	2
1,3 Glossary	
1.4 Document History	2
2. Summary	5
3. Introduction	6
3.1 The Project - Replacement of the Heating and Cooling Systems at the Richmond Recreation Centre	6
3.2 Aims	6
3.3 Methodology	
3.4 Project Deliverables	
3.5 Information Gathering	
3.6 Current System	
3.7 Proposed System	
3.8 Pool and Pool Hall Requirements	
3.9 Wet and Dry Area Air Conditioning	
3.10 Pool Heat Exchangers and Heat Transfer	
3.11 Domestic Hot Water Heating Requirements	
3.12 The Richmond SEC efficiency metric	
4. Sizing of the LCA Heat Pumps	
4.1 LCA Heat Pumps Performance Modelling Graph	
4.2 System Inputs and Outputs	.11
5. Parameters used to formulate this report	.12
5.1 Existing energy usage – Gas and Electricity	.12
5.2 Sabroe HeatPAC 108L heat pumps	.13
5.3 Ambient weather / temperature file	.13
5.4 Heat Pump Inlet Temperatures*	.14
5.5 Sundry Parameters	.14
6. Results	. 15
6.1 Performance results	.15
6.2 Summary annual running costs for the pools and enclosures	
6.3 Maintenance comparison between existing system and LCA heat pumps	
6.4 Comparison of annual running costs incl. maintenance (no solar) p.a.*	.17
6.5 Greenhouse Gas Emission savings	.17
7. Pool and Building AC Control and System Design Approach	
7.1 Design	.18
7.2 SCADA Building Pool Controls and LCA Systems	.18
8. Differences between Traditional Systems and LCA Systems	
8.1 Utilising the whole output from the heat pump - hot and cold	
8.2 A matter of balancing energy loads	.19
9. Using SEC as a centre wide efficiency metric	.21
10. APPENDIX	. 22

Table of Figures

Figure 1: Energy Cost Comparison - estimate	5
Figure 2: Max System Heat Production vs Heat Load for Richmond Recreation Centre	10
Figure 3: Cooling and Heating Output/Demand, and LCA Power Input graphs	11
Figure 4: Example SCADA Screen	18
Figure 5: Aquatic Centre energy 'Understanding swimming pool ventilation'	20
Figure 6: Energy flows in an integrated energy system	
Figure 7: Heat Pump Compressors	22
Figure 7: Heat Pump Compressors Figure 8: Copeland Compressor	22
Figure 9: Rheem Accent Commercial Heat Pump	
Figure 10: Evoheat Commercial Heat Pump	
Figure 11: Multiple heat pump installations at Dreamworld Gold Coast Qld	23
Figure 12 Integrated System Overview	24
Figure 13: The change of COP with inlet temperature	25
Figure 14: 30,000L water storage tanks at Leisure Link, Geelong	31
Figure 15: Sabroe HeatPAC 108	32
Figure 16: Example of a chilled air discharge evaporator	

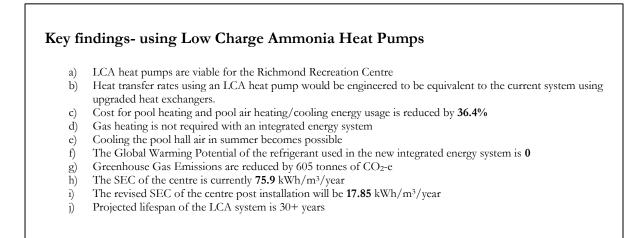

Index of Tables

Table 1: Specific Energy Consumption (SEC)	8
Table 2: Peak and average usage of heatpump capacity across a year	9
Table 3: Normalised gas data	.12
Table 4: Sabroe HeatPAC 108L Output Specifications	.13
Table 5: Ambient Temperature – Number of hours and COP	.14
Table 6: Differences between existing design and integrated energy system components	.19
Table 7: COP Matching Example	.26
Table 8: COP Efficiency Increase	.26
Table 9 shows the different types of refrigerants as shown in Figure 13 (and others)	.27
Table 10: LCA heat pump performance at varying inlet temperatures	.30
Table 11: LCA heat pump input and outputs as inlet temperature varies	.30
Table 12: Recoverable Water and Power from the Pool Hall Air Exhaust	. 33
Table 13: Summary of annual heat pump service costs	. 34

2. Summary

This report provides the technical data to demonstrate that a Low Charge Ammonia (LCA) system using two Sabroe 108L heat pumps configured as **custom** HeatPACs with de-superheaters, can replace the existing gas and electrical A/C systems at the Richmond Recreation Centre. The LCA Heat pumps will be used to replace existing systems for the heating of the pools and heating and cooling of air in the wet and dry areas and the showers of the Richmond Recreation Centre. We have also provided an estimated operational cost comparison for both the old and the proposed new system.

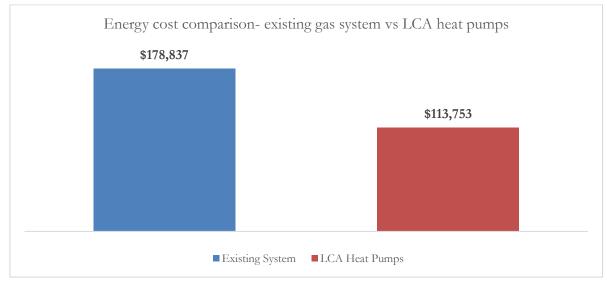


Figure 1: Energy Cost Comparison - estimate

The use of industrial Low Charge Ammonia heat pumps has not been considered and modelled for aquatic centres in Victoria before now. The aim of this report is to showcase that combining LCA heat pumps with other energy saving technologies can dramatically reduce the energy consumption costs of aquatic centres, utilise environmentally friendly refrigerants, and substantially reduce maintenance costs for councils.

Integrated Energy Systems can leverage large amounts of low-grade heat and heat recovery if the refrigeration engineers and building designers incorporate this technology into their designs during the planning stages. The aim of this report is to provide information for the council to better understand how these heat pumps function, the operational costs, and the best configuration to retrofit this aquatic centre.

In traditional gas systems, the supply output temperature from the gas boiler is 80°C which is much higher than an LCA heat pump water output temperature of 45°C. However, it is the amount of kW transferred that counts not the temperature differential. The LCA heat pumps, associated heat exchangers and pump flow rates would be reengineered to have the same heat transfer (in kW) as the gas system to achieve target pool temperatures. See **3.10** for a detailed description.

3. Introduction

"Aquatic centres are major community facilities that require large amounts of water and energy to operate. They are unlike any other type of building in terms of energy and water consumption, and can consume up to seven times more energy per floor area compared to an average commercial office building"

- Energy performance and water usage of aquatic centres' Jonathan Duverge- 2019

The rise in the price of gas for councils in Victoria and NSW in mid-2018 and the realisation that gas usage and choice of refrigerants were one of greatest contributor to council greenhouse emissions has led to many councils looking further afield than their usual suppliers for more energy efficient and green solutions. Aquatic centres have some of the largest energy consumption figures of any commercial building and this fact is borne out by the proportion of energy costs that aquatic centres represent for councils in their budgets. By reducing energy costs in aquatic centres councils can go some way closer to running these centres at break-even or better budgets. With regular maintenance, an Integrated Energy Systems will last the life of the building.

The incorporation of Integrated Energy Systems is a new approach to these centres that has been demonstrated successfully in cold stores, food processing plants and other industries in Australia: this is not a new technology. It has been in use in Australia for about a century and is only now being considered for use in aquatic centres. By integrating the heating and cooling functions into one building-wide system, large energy savings can be made, less equipment purchased, and lower maintenance costs incurred. By going 'off gas' these centres can also make full use of renewable electricity, solar PV systems, PVT systems and thermal storage which can boost these savings further. This is only possible when these centres are using an efficient heating and cooling plant that is electrically powered.

3.1 The Project - Replacement of the Heating and Cooling Systems at the Richmond Recreation Centre

Yarra City Council is in the process of assessing the feasibility of high efficiency heat pumps to replace the existing heating and cooling systems at the Richmond Recreation Centre in Gleadell, St Richmond, Victoria. The council has committed to reducing their greenhouse gas emissions as a priority by means of sourcing 100% renewable energy and the phasing out of gas.

This technical evaluation study was a partnership effort between Yarra City Council, SmartConsult and Scantec Refrigeration as a proof of concept for the applicability of industrial scale heat pumps in aquatic centres.

3.2 Aims

This report aims to provide accurate modelling for the performance, reliability and costs of an Integrated Energy System. Specifically, this involves comparing the performance of LCA heat pumps compared with gas-based system that is currently installed. By sourcing accurate and independent information from a range of sources this report provides the council with a sound baseline they can work from to determine the viability of the installation of heat pumps.

3.3 Methodology

Basing our calculations on the data provided by Yarra City Council we have been able to model the heating and cooling and match this to the output of the LCA heat pump.

3.4 Project Deliverables

Analysis of data provided by Yarra City Council have allowed us to determine:

- a) Establishing the thermal load profile for the centre and sizing the LCA integrated energy system for heating and cooling that can replace an existing gas and electrical A/C systems.
- b) Maximum electricity demand in kW for the pool and pool enclosures heating and cooling requirements.
- c) The annual kWh^T consumption for the pool and pool enclosures heating and cooling.
- d) High level cost estimate for pool and pool enclosures heating and cooling.
- e) Projected lifespan of the system

It needs to be noted that the following is **excluded** from the analysis:

- General Electricity
- General Lighting
- Pool Pumps (Filters and hot water circulation pumps) and ancillaries

3.5 Information Gathering

Data for this analysis has been provided by Yarra City Council, Scantec Refrigeration and Johnson Controls International. Further detailed information will be required for a detailed design specific to the site prior to implementation.

3.6 Current System

The current heating and cooling systems at Richmond Recreation Centre comprises of:

- 850 kW condensing main boiler
- 150 kW condensing secondary boiler
- 65 kW turbine cogeneration system
- 6 x gas hot water systems for domestic hot water
- 8 x packaged air conditioning units

3.7 Proposed System

Two Low-Charge Ammonia (LCA) heat pumps to simultaneously provide the space heating and cooling for the site, as well as hot water for the pools and DHW.

3.8 Pool and Pool Hall Requirements

Determine the heating and cooling loads from the data provided and model the performance of a Low Charge Ammonia heat pump system to calculate projected energy consumption.

3.9 Wet and Dry Area Air Conditioning

Summary investigation of the current pool heating and dry area A/C system and its conversion to using a hot and chilled water system to provide A/C services from the LCA heat Pumps.

3.10 Pool Heat Exchangers and Heat Transfer

Demonstrate that using the lower temperature of the water being produced by the LCA heat pumps compared to gas systems is not an issue.

The heat exchangers would be much larger in size than the existing heat exchangers to allow for sufficient heat transfer to the pool water. More details on this type of heat exchanger are available in Appendix D

Considerations in designing and sizing heat exchangers

In traditional gas systems, the difference between design pool water return (26°C) and pool water supply (45°C) temperatures is generally greater than when using an LCA heat pump. However, it is the amount of kW transferred that counts, not the temperature differential. The LCA heat pump and associated heat exchangers and pump flow rates would be re-engineered to have the same heat supply (in kW) as the gas system to achieve target pool temperatures.

If you increase the heat exchanger *logarithmic mean temperature difference* (LMTD) this would allow the heat exchanger to be smaller/cheaper, however, this decreases the heat pump COP and therefore its energy efficiency.

A supply temperature to the pool of 45°C (Scenario 1) is possible and would require the warm outlet temperature from the heat pump to be 49°C for a 4K approach¹ between heat pump and pool supply temperatures. If the supply temperature to the pool is, say, 33°C (Scenario 2), then the required warm outlet from the heat pump is 37°C for the same approach. This will deliver significantly better COP than 49°C.

¹ 4K approach refers to the temperature lift in the heat exchanger to achieve 45°C input and 49°C output, a technical term for heat exchangers.

The *speed* with which a volume of water is heated is a function of the amount of supplied heating (in kW) and flow rate. A pool water supply temperature of 45°C is no guarantee of rapid heating if the flow of water supplied at that temperature and therefore the heating effect entering the pool is relatively *low*.

If the heat pump output in kW matches the heating output of the existing boiler(s), then the time required to heat the pool water from temperature A to temperature B will remain unchanged. If the heat exchanger between the pool water and the warm loop of the heat pump is designed accordingly, it is possible to operate both scenarios and anything in between. It would be necessary to design the heat exchanger for the worst-case kA, where kA is the element within:

The logarithmic mean temperature difference ΔT_m is given by the operating conditions required. The unit for kA is W/K and is represented by the product of surface area A in m² and the heat transmission k in W/m^2K at the prevailing operating condition.

3.11 Domestic Hot Water Heating Requirements

Hot water for showers is provided from the desuperheaters available on the heat pumps. A desuperheater will provide water at up to 80 °C and this will be available whenever the heat pump is operating. This hot water is a product of the operation of the heat pumps and accounts for about 6-8% of the total heat pump output. Any excess hot water produced can be fed back into the pool heating loop (45 °C).

3.12 The Richmond SEC efficiency metric

Specific Energy Consumption (SEC) is a widely used metric employed by designers and builders of cold stores. It is useful for aquatic centres as it allows for a meaningful measurement of the heating required in the pool (not measured specifically as the pool has a known heat loss rate) and the air heating requirement measure in volume. This metric captures the **overall** efficiency of the building envelope.

The current SEC was calculated to be 75.9 which is comparatively high due to the losses from the skylights in the roof over the pool and a lack of roofing insulation. Due to the heritage design of the building, this loss is difficult to overcome on this site. The SEC metric is discussed in more detail later in section 9 of this document.

Table 1: Specific Energy Consumption (SEC)								
ItemPool Hall +kWhSpecific Energy ConsumptionGym Volume m3Consumption(SEC) in kWh/m3/p.a.								
Current SEC p.a.	37,360	2,835,443	75.9					
New SEC Post LCA p.a.	37,360	666,771	17.8					
Savings p.a.	-	2,168,672	76%					

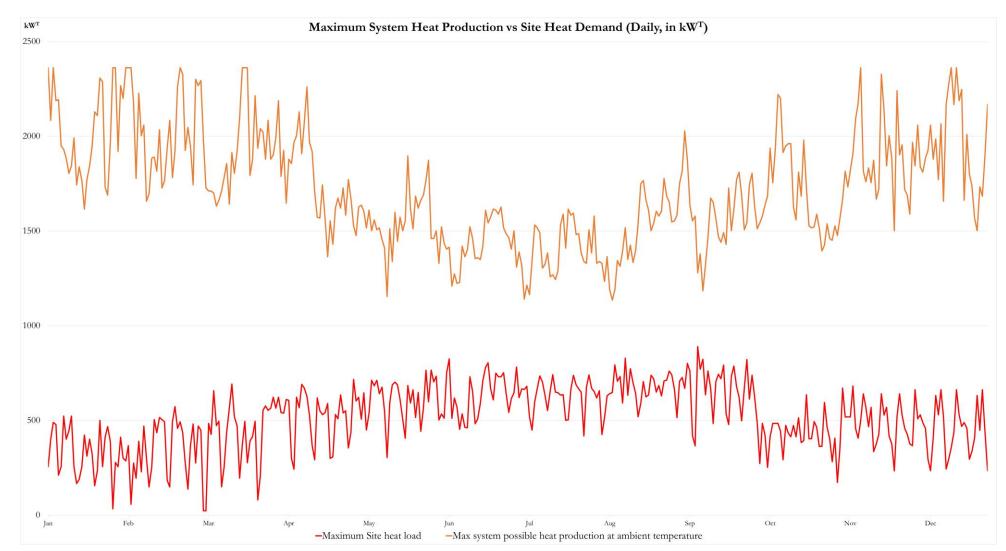
Note - The kWh Consumption refers to the energy use for space heating and cooling and pool heating that is comprised of both electricity consumption for the A/C as well as converted gas usage.

4. Sizing of the LCA Heat Pumps

The system was sized to meet the building's maximum heating and cooling demands with ambient air as the only heat source for the heat pumps. The whole of building heating and cooling loads and the pool heating load were plotted against the production from the heat pumps based on the ambient inlet temperature capped at 30°C. This is shown in the table and graph below.

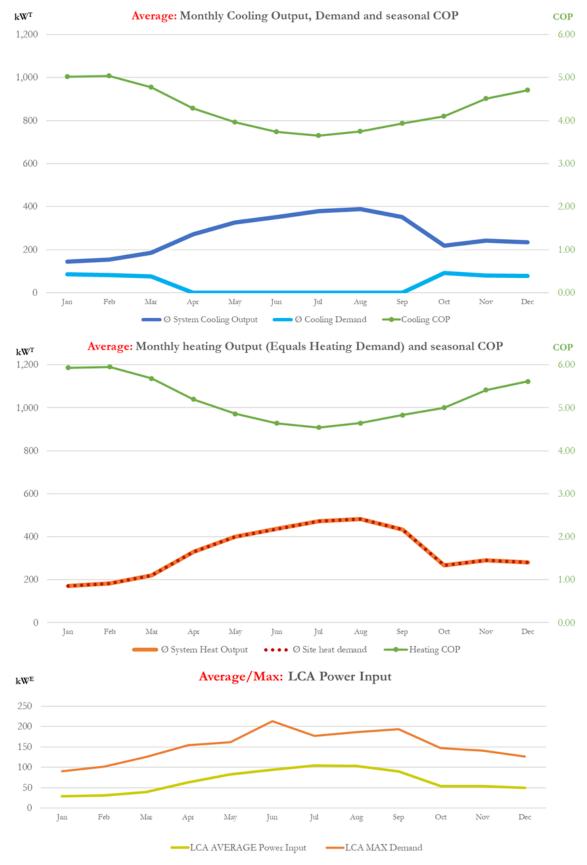
The performance modelling graph demonstrated that the proposed system is well within its capabilities at each ambient temperature data point. While the graphs show daily summaries, the calculations are based on hourly data points over the full 365 days using weather data for the Richmond location.

Table 2 shows that the maximum usage of the heat pumps capacity is at 70% and is reached on a single point in September. The real maximum average usage of the heat pump capacity is in July and August which is 46%, with a yearly average of 32%.


Month	Peak Usage	Average Usage
January	28%	17%
February	30%	18%
March	39%	22%
April	47%	30%
May	52%	39%
June	58%	43%
July	60%	46%
August	67%	46%
September	70%	43%
October	42%	26%
November	40%	26%
December	42%	24%
Peak / Ø	70%	32%

* Note this modelling is a worst-case scenario based on only air as a heat source.

4.1 LCA Heat Pumps Performance Modelling Graph


Figure 2: Max System Heat Production vs Heat Load for Richmond Recreation Centre

4.2 System Inputs and Outputs

Figure 3: Cooling and Heating Output/Demand, and LCA Power Input graphs

5. Parameters used to formulate this report

To establish the heating and cooling loads for the site, sub-metered gas and electricity usage data was provided by council to establish a demand baseline. Multiple sets of data were provided of which the following were used to calculate the heating and cooling loads for the aquatic centre at 11 Gleadell St. Richmond. These were:

- 1. Gas usage profiles from gas sub-meters installed for the cogeneration system and the main boiler
- 2. Gas bills for the 2019 calendar year
- 3. Electricity consumption from sub-meters installed on the mechanical distribution boards on site.
- 4. Electricity production from the cogeneration system's sub-meter
- 5. Electricity interval data from the main meter.
- 6. Electricity bills for the 2019 calendar year

5.1 Existing energy usage - Gas and Electricity

Gas Data

The gas data was provided in m³ usage in hourly increments over a full year from both the cogeneration and main boiler sub-meters and were converted to GJ. A small portion of the gas usage for a secondary smaller boiler and ancillary hot water systems used for the spa and domestic hot water was missing, this was reconciled from the bills as seen in the table below.

The data was then adjusted/scaled to match the monthly usage from the bills using the same usage pattern as derived from the gas usage files and converted to kWh^{T.} The boilers data was multiplied by 0.9 being the efficiency of gas boiler (COP of 0.9) and the cogeneration data was multiplied by 0.5, being the efficiency of the system (COP of 0.5).

					COP: 0.9	COP: 0.5	
Month	Total Bills GJ	Main boiler GJ	Cogen GJ	Secondary boiler GJ	All boilers (main & second) heating load kWh ^T	Cogen heating load kWh ^T	Total site heating load kWh ^T
Jan	593	284	167	142	106,495	23,156	129,651
Feb	572	266	156	149	103,943	21,702	125,645
Mar	732	347	204	181	132,024	28,289	160,313
Apr	860	439	258	163	150,675	35,773	186,448
May	1,120	586	344	189	193,941	47,768	241,709
Jun	1,181	632	371	178	202,622	51,482	254,104
Jul	1,332	726	426	180	226,532	59,151	285,683
Aug	1,380	746	437	197	235,743	60,723	296,467
Sep	1,178	621	364	192	203,324	50,603	253,927
Oct	920	487	286	147	158,613	39,681	198,293
Nov	973	511	300	163	168,386	41,618	210,004
Dec	964	506	296	162	166,914	41,183	208,097
Totals	11,804	6,153	3,608	2,043	2,049,212	501,129	2,550,341

Table 3: Normalised gas data

Electricity Data

Electricity Usage data was extracted from the files as provided by Council.

- The electricity heating load for the A/C was derived from the interval data from electricity sub-meters x 2.5 (Estimated COP of these units). The percentage for the dry areas and gym of the overall electricity usage from submeters showed that only 37% of the total site electricity consumption was used for A/C and for heating only for the months from April to October.
- 2. The 37% was an average of the total A/C usage from 2 relevant mechanical distribution boards as provided by the Council.

Gas Electricity A/C Max Peak Cogen **Boilers** Total Max Peak kW Heating Heating Heating A/C Heating Cooling kW Heating Heating Load Gas Load Gas + Cooling Load Load Load load Load + A/CA/C Load Unit kWhT kWhT kWT kWT kWhT kWh^T kWhT kWh^T 501,129 Total 2,049,212 2,550,341 352,643 2,902,984 360,111 890 191

Existing thermal load summary

Existing electricity and gas usage summary (excluding Solar)

	Grid Electricity Usage	Electricity Generation Cogen	Total Electricity Used	Electricity Monthly Peak Demand	Electricity usage for A/C Only (37%)	Gas Heating Load	Total energy for heating & cooling (Gas & A/C)
Unit	kWh ^E	kWh ^E	kWh ^E	kWE	kWh	kWh	kWh
Total	643,095	127,449	770,544	176.77	285,101	2,550,341	2,835,443

5.2 Sabroe HeatPAC 108L heat pumps

The system was sized using 2 x HeatPAC 108L Sabroe Heat Pumps as a custom configuration. Table 5 shows the COP and shaft power for the Sabroe HeatPAC 108L as provided by Johnson Controls.

Ambient Air	Shaft Electricity	Heat Pumps x 2	Single Unit Duties, kW Nominal COP			СОР	
°C	kW	kW	Heating	Cooling	Hot	Cold	Total
0	111.4	222.8	405	316.7	3.64	2.84	6.48
5	123.1	246.2	494.6	392.6	4.02	3.19	7.21
10	134.6	269.2	614.9	498	4.57	3.7	8.27
15	140.2	280.4	740	613.2	5.28	4.37	9.65
20	147.7	295.4	872.3	734	5.91	4.97	10.88
25	151.6	303.2	1017	870.6	6.71	5.74	12.45
30	154	308	1181	1028.7	7.67	6.68	14.35

Table 4: Sabroe HeatPAC 108L Output Specifications

5.3 Ambient weather / temperature file

We used an hourly temperature file for the whole year, for the Richmond location for the Aquatic Centre at 11 Gleadell St. This was sourced from our Helioscope Solar program and is a 'TMY, Melbourne, RMY (epw)' file adjusted by the program for the Richmond location

5.4 Heat Pump Inlet Temperatures*

The heat pump inlet temperatures are critical to the performance of the heat pump. In Table 5 the number of hours for each degree have been summarized at the Richmond location. This shows that there are relatively few hours at low temperatures which affect the efficiency of the heat pump.

The COP of the Sabroe HeatPAC 108L varies according to the ambient temperatures as shown below.

°C	Count Hours	Seasonal COP Hot	°C (cont.)	Count Hours	Seasonal COP Hot
0	0	3.64	16	438	5.41
1	3	3.68	17	433	5.54
2	7	3.74	18	365	5.68
3	51	3.82	19	335	5.81
4	123	3.92	20	305	5.95
5	198	4.02	21	271	6.09
6	292	4.13	22	234	6.24
7	472	4.25	23	186	6.39
8	489	4.38	24	143	6.54
9	545	4.50	25	96	6.71
10	530	4.63	26	92	6.88
11	608	4.76	27	79	7.07
12	621	4.89	28	54	7.26
13	555	5.02	29	33	7.46
14	575	5.15	30	98	7.67
15	529	5.28	Total Hours	8,760	-

Table 5: Ambient Temperature - Number of hours and COP

*See further description in section 8.4 on how we intend to increase the inlet temperatures in the winter. For instance, if we increase the inlet temperatures by 4°C then the efficiency increases by around 5%.

5.5 Sundry Parameters

Pool & enclosure temperatures

Pool	Temperature
Pool 50m	30°C
Toddler pool	32°C
Spa	37°C

Pool enclosure and pool size summary

Pool Enclosures areas	m ³
Pool Hall 50m + Toddler and Spa Volume	34,203
Dry Area Volume	3,157
Total volume	37,360

Pool opening hours

Days	Monday - Thursday	Friday	Saturday	Sunday
Opening hours	6am – 10pm	6am – 9pm	8am – 5pm	8am – 5pm

6. Results

6.1 Performance results

Existing	Existing Thermal Load						
Month	Gas Heating Load	Electricity A/C Heating Load	Total Heating Load Gas + A/C	Electricity A/C Cooling Load	Max Peak kW Heating Load Gas + A/C	Max Peak kW Cooling Load	
Unit	kWh ^T	kWh ^T	kWh ^T	kWh ^T	kWT	kWT	
Jan	127,754	0	127,754	64,382	523	191	
Feb	123,297	0	123,297	54,959	573	177	
Mar	164,096	0	164,096	56,798	692	172	
Apr	185,426	51,473	236,899	0	717	0	
May	241,344	56,476	297,820	0	765	0	
Jun	251,366	62,946	314,312	0	825	0	
Jul	286,492	64,959	351,451	0	782	0	
Aug	297,491	61,172	358,663	0	829	0	
Sep	256,305	55,616	311,921	0	890	0	
Oct	198,334	0	198,334	68,052	636	156	
Nov	209,767	0	209,767	57,287	681	149	
Dec	208,670	0	208,670	58,634	662	161	
Total	2,550,341	352,643	2,902,984	360,111	Max: 890	Max: 191	

Existing	Existing Electricity & Gas Usage						
Month	Grid Electricity Usage	Electricity Generation Cogen	Total Electricity Used	Electricity used for A/C Only	Electricity kW Monthly Peak	Gas Consumption inc. Cogen	
Unit	kWh ^E	kWh ^E	kWh ^E	kWh ^E	kWE	GJ	
Jan	62,298	7,304	69,602	25,753	177	591	
Feb	50,013	9,402	59,415	21,984	161	571	
Mar	52,093	9,310	61,403	22,719	156	760	
Apr	44,950	10,696	55,646	20,589	163	858	
May	52,276	8,779	61,055	22,590	145	1,117	
Jun	51,974	16,076	68,050	25,179	153	1,163	
Jul	55,883	14,343	70,226	25,983	146	1,326	
Aug	52,719	13,413	66,132	24,469	147	1,377	
Sep	53,100	7,026	60,126	22,247	140	1,186	
Oct	62,986	10,583	73,569	27,221	146	918	
Nov	52,277	9,655	61,932	22,915	148	971	
Dec	52,527	10,862	63,389	23,454	145	966	
Total	643,095	127,449	770,544	285,101	Max: 177	11,804	

NEW Thermal I	NEW Thermal Load						
Month	Heat Pump - Heat Load	Total Cooling Availability	Average of Heating COP	Average of Cooling COP	Excess Cooling Available		
Unit	kWhT	kWh ^T	СОР	COP	kWhT		
Jan	127,754	107,962	5.95	5.03	43,581		
Feb	123,297	104,302	5.92	5.00	49,343		
Mar	164,096	137,777	5.68	4.77	80,979		
Apr	236,899	195,294	5.23	4.32	195,294		
May	297,820	242,157	4.89	3.98	242,157		
Jun	314,312	253,150	4.63	3.73	253,150		
Jul	351,451	281,844	4.56	3.66	281,844		
Aug	358,663	289,035	4.68	3.78	289,035		
Sep	311,921	253,500	4.91	4.01	253,500		
Oct	198,334	162,249	5.15	4.24	94,198		
Nov	209,767	174,531	5.49	4.58	117,244		
Dec	208,670	174,667	5.71	4.79	116,033		
Total	2,902,984	2,376,468	Avg 5.23	Avg 4.32	2,016,358		

The new thermal load matches the existing system load over a full year.

NEW EI	NEW Electricity Usage						
Month	Total LCA Heat Pumps System Electricity Usage	Total LCA Heat Pumps System Peak Demand	Remaining Electricity Site Usage [†]	Total Electricity Site Usage			
Unit	kWh ^E	kWE	kWh ^E	kWh ^E			
Jan	24,744	104	40,434	65,178			
Feb	23,798	116	31,771	55,569			
Mar	33,176	144	34,589	67,765			
Apr	52,378	177	30,825	83,203			
May	70,377	186	38,646	109,023			
Jun	77,829	245	36,553	114,382			
Jul	88,851	204	41,288	130,139			
Aug	88,672	214	39,820	128,492			
Sep	74,183	223	40,451	114,634			
Oct	45,559	169	42,928	88,487			
Nov	44,504	163	36,358	80,862			
Dec	42,700	146	35,785	78,485			
Total	666,771	Max 245	449,449	1,116,220			

[†]The remaining consumption above includes the electricity usage for pumps, lighting and ancillary equipment usage for the site.

6.2 Summary annual running costs for the pools and enclosures

A: Estimate of annual running costs using an LCA Heat Pumps System – no solar

Item	Levelized cost per kWh [†]	Total Est. Units	Total Cost
Electricity Heat Pump	\$0.1706†	666,771 kWh	\$113,753

[†] **Note:** This cost per kWh is an *average cost*, which **includes** the kVA charges. See **Appendix XXII** for a breakdown of the cost and assumptions. It also reflects the higher demand charges based on the ratchet tariff. In this case the maximum estimated demand per month is set at a conservative 500 kVA.

B: Estimate of annual running costs from the report using gas boilers and the existing A/C chiller

Item	¢ /I mit (CI on 1-W/h)	Total Est. Units	Total Cost
Item	\$/Unit (GJ or kWh)	Total Est. Units	Total Cost
Gas Cost	\$11.37 / GJ	11,804 GJ	\$134,212
Electricity Cost [^]	\$0.1565 / kWh^	285,101 kWh	\$44,626
			\$178,838

Note: This cost per kWh is an *average cost*, which **includes** the kVA charges. See **Appendix XXI** for a breakdown of the cost and assumptions.

6.3 Maintenance comparison between existing system and LCA heat pumps

Maintenance Costs	Actual p.a. Cost
Existing A/C Chillers + Cogen + Gas Boilers	\$85,000
Low-charge ammonia heat pump (estimate)	\$20,000

6.4 Comparison of annual running costs incl. maintenance (no solar) p.a.*

Item	Current System	Proposed System	Saving	Total Savings
Electricity + Gas	\$178,838	\$113,753	\$65,085	36.39%
Maintenance	\$85,000	\$20,000	\$65,000	76.47%
TOTAL	\$263,838	\$133,753	\$130,085	49.30%

*Note: Energy tariffs used are standard large market tariffs, maintenance costs are standard costs for existing gas and A/C systems.

6.5 Greenhouse Gas Emission savings

Item	Gas Type	Total t CO ₂ -e p.a.
Current System	Natural Gas & Refrigerant Leakage [§]	605
Proposed LCA System	Ammonia	0
Reduction in tonnes of CO ₂ -	605	

SNote: Natural emits 0.05 tonnes of CO₂-e $/G_j$, while the average leakage of refrigerant is estimated at 15 tonnes of CO₂-e per annum.

7. Pool and Building AC Control and System Design Approach

7.1 Design

Scantec will design and specify the best system based on the specific environmental considerations. The design will employ the same design principles as those applied to any other medium to large scale industrial refrigeration plant design employing the same refrigerant. In addition, it will adhere to the relevant standard predominantly AS/NZS 5149 Refrigerating Systems and the Standards referred to the therein.

7.2 SCADA Building Pool Controls and LCA Systems

A SCADA control system with a customised display such as the one shown below will be developed for the Richmond Recreation Centre. This can also be integrated with the BMS, pool equipment, filters etc.

Figure 4: Example SCADA Screen

8. Differences between Traditional Systems and LCA Systems

LCA heat pumps have capacities up to **14MW** (Drammen Norway) or even larger and a large aquatic centre will use two heat pumps to service the entire building (this allows for one to be serviced whilst the other heat pump continues operating). This greatly reduces maintenance costs as the centre has only two **central** heat pumps to service.

The additional benefit from using an integrated energy system is that that the compressors would normally be installed for use in the HVAC air handling system for the pool hall and other air conditioned areas can be **replaced** by heating and cooling coils that connect into the system: a further saving in energy and maintenance costs detailed in Table 6.

In addition, this plant concept utilising secondary cooling/heating media on the cold and warm sides will totally eliminate the employment of HFC refrigerants, which are being phased down in Australia and across the world for environmental reasons (see section 11.3 - Why GWP is important).

Туре	Existing gas/electric system	Integrated Energy System
Pool water	Gas boiler and/or CoGen	LCA heat pump
Pool air	HVAC unit -internal heat pump	LCA heat pump- coil and fan
Air Conditioning Gym	HVAC unit with heat pump	LCA heat pump- coil and fan
Air conditioning exercise	HVAC unit with heat pump	LCA heat pump- coil and fan
spaces		
Hot water for Showers	Gas HWS with storage	LCA heat pump water heated by
		desuperheaters(s) held in storage tanks

Table 6: Differences between existing design and integrated energy system components

8.1 Utilising the whole output from the heat pump - hot and cold

As the heat pump is producing warm and cold water from the vapour compression cycle, the unit can be used to heat the pool water and pool enclosure air, while also air-conditioning office areas, dry exercise areas and the pool enclosure air in summer. There is more heating than cooling required in an aquatic centre in Victoria for most of the year.

8.2 A matter of balancing energy loads

Until now energy in aquatic centres has been viewed in simple terms. If you need to heat the pool you use gas to heat the water. If you need to cool the air, you use a heat pump (HVAC compressor) to cool the air. But when we **integrate** the energy systems in the centre, a whole other range of opportunities are available to us for saving energy.

Once you reduce the cost of energy production in the centre to a very low level then the opportunity to store energy for use at peak electricity times becomes an option. However, this storage of energy needs to be carefully considered, as the amount of energy required in the whole centre is so large. The percentage of energy input vs. storage should be carefully calculated as changing this ratio is very difficult once the centre has been constructed and space in the building has been allocated.

The energy usage within an aquatic centre is summarised in Figure 5. As a rule of thumb, the heat load for air in the wet exercise areas is usually around double the heat load for water in the pools.

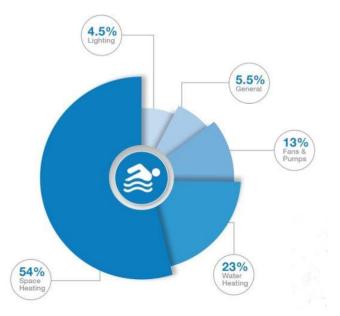


Figure 5: Aquatic Centre energy 'Understanding swimming pool ventilation'

The flows of energy in the system are summarised in Figure 6 and the diagram is quite complex, as the demands of the energy flow in the system **are** complex. A robust design of these systems and their BMS is essential to fully gain the most efficiency benefits from the system. An Integrated Energy System should be included in the design of these buildings from an early stage as many elements of the building design affect the efficiency of the system if the highest efficiencies are the ultimate goal.

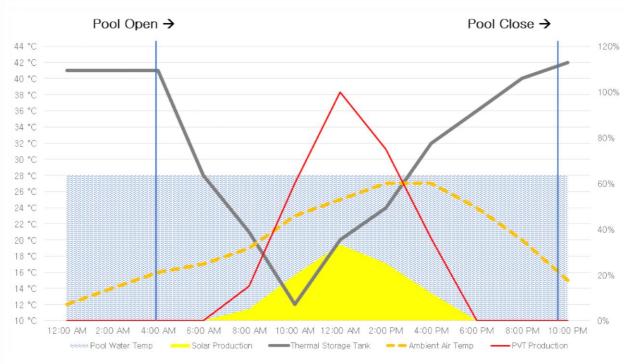


Figure 6: Energy flows in an integrated energy system

9. Using SEC as a centre wide efficiency metric

The use of a meaningful metric for measuring the efficiency of energy use in aquatic centres has not been agreed on by councils and the designers and builders of these centres to date. **Specific Energy Consumption** (SEC) is a widely used metric employed by designers and builders of cold stores that makes a lot of sense for use in aquatic centres as it allows for a meaningful measurement of the heating required in the pool (not measured specifically as the pool has a known heat loss rate) and the air heating requirement measured in volume. This metric captures the overall efficiency of the building.

SEC is measured in **kWh/m³*a** (**kWh per m³ per annum**) and is particularly useful when it is applied to the wet exercise areas of an aquatic centre. In simple terms, the wet areas can be summarised as one-part pool water heating and two-parts pool air heating. The m³ measurement captures that information and makes the SEC a meaningful and accurate measure of the highest energy demand area of the building structure. Knowing the SEC of a building is particularly useful for councils when they are making comparisons between the efficiencies of different centres they own.

The video below is an example of how this metric is used in comparing cold store efficiency between buildings with different sizes and upgraded refrigeration plant effectively:

https://www.youtube.com/watch?v=7Xsn-ui4lil&feature=youtu.be

10. APPENDIX

A. Why commercial HFC & HFO based pool heat pumps are not efficient in a Victorian climate

I. Where does the heat come from?

Commercial pool heat pumps are usually 'air to water' heat pumps. The heat pump draws **air** into the unit, the heat from the air is extracted and the cooled air is then rejected from the unit and discarded. The heat that is recovered from the air is then applied to water that is pumped through the units via a flat plate heat exchanger **within** the unit. The water that goes into the heat pump is usually 'lifted' in temperature by between 2 to 4°C depending on the ambient temperature which also determines the COP. The lower the temperature, the lower the COP and the associated lift.

This explains why some commercial HFC & HFO heat pumps cannot provide enough heat for large pools in Victoria but will work in QLD: In Victoria they do not have sufficient 'lift' to heat a pool in the winter months and this results in pools not reaching their required target temperatures.

II. How commercial HFC & HFO based pool heat pumps work

The compressors used in these heat pumps are usually reciprocating or scroll compressors and hermetically sealed that cannot be easily serviced. The compressors are of a similar type to those that are used in domestic refrigerators; just a larger design.

Figure 8: Copeland Compressor

Figure 7: Heat Pump Compressors

Figure 10: Evoheat Commercial Heat Pump

Figure 9: Rheem Accent Commercial Heat Pump

Commercial pool heat pumps are usually designed as a stand-alone unit that allows the centre owner to increase their heating capacity for pool heating by simply adding more units. The largest capacity of these unit is usually around 200kW. Therefore, if you require 1000kW of heating you would install 5 of these heat pumps.

The design of these heat pumps is 'packaged' as the heat pump has a compressor, a condenser, an evaporator and a heat exchanger all within the enclosure of the unit. This allows pool water to be directly heated to maintain the pool temperature. The 'packaging' of these components creates more maintenance issues for larger pool operators, as the additional plant requires more maintenance collectively. These compressors are designed to be replaced or exchanged should that be required during the life of the heat pump. They are sealed and not accessible internally except by specialized repairers.

Figure 11: Multiple heat pump installations at Dreamworld Gold Coast Qld

A 200kW heat pump using these compressors may have two or three compressors within their casing (a total of up to **15 compressors** to achieve 1000kW output). It is understandable why the **maintenance** of these systems becomes a concern for centre owners as these systems age and maintenance increases.

III. Why a CO₂ heat pump will not work

Industrial heat pumps are selected for use based on the temperature ranges they are operating in. CO_2 heat pumps are well suited to high temperature applications. The global warming potential (GWP) of CO_2 is relatively low (1) compared with synthetic HFC refrigerants such as R134a, which has a GWP 1300 times that of CO_2 , or even the recently developed 'environmentally friendly' refrigerants such as HFO1234yf, with a GWP of 4. By comparison, naturally produced methane has a GWP of 25. However, at the temperatures that are required for an aquatic centre, CO_2 heat pumps are constrained by the characteristic of the refrigerant they use.

It just so happens that the '**critical point'** of CO₂ is **31.1°C** which is very close to the operating temperature of most pools. Exceeding the critical point will make condensation of the refrigerant impossible and make efficiency relatively poor. Operation of a CO₂ based heat pump with acceptable levels of energy efficiency and at reasonably high output temperatures of the medium to be heated is possible provided there is a large temperature change on the warm side. If the heated medium enters the CO₂ based heat pump at a temperature well below the critical point, then COPs are acceptable even at heated medium output temperatures of >80°C.

IV. Why industrial 'Low Charge Ammonia' heat pumps will work in aquatic centres in Victoria

Low Charge Ammonia heat pumps of the 'water to water' type with a glycol circuit, which runs through an air cooler cooling ambient air or other heat source to increase the inlet temperatures. This makes the LCA Heat-Pumps much more flexible and allows the system components to be designed to work within the temperature range for the locality of the installed system.

The ambient air operating temperature and efficiency range for an LCA Heat-Pump is much wider than a traditional HFC and HFO based heat pump allowing for a greater lift in temperature. This means that the LCA Heat-Pumps can meet the required heating and cooling requirements for the Richmond Recreation Centre. The graph (See Figure 2) shows maximum heat output available from the heat pumps compared to the heat production as required throughout the year based on the actual heat requirements data for Richmond Recreation Centre.

The water entering the heat pump on the inlet side is 'lifted' in temperature by approximately 5°C. LCA heat pumps are one part of a much larger **system** and are designed to operate in excess of 30+ years. They work to extract heat **from water** instead of air, and the heated water is then distributed to a pool or building as part of a water loop that may also be servicing the HVAC system, the DHW for showers and other air-conditioned areas.

This warm water loop is about 45° C which is far lower than the gas systems they replace (~80°C). LCA heat pumps use a multi cylinder reciprocating compressor which is driven by a speed controlled electric motor, that is separate to the compressor, via a drive shaft. A single LCA heat pump will fit through a standard doorway and is about 3-4 metres in length depending on the capacity of the unit.

The LCA heat pump works in conjunction with heat absorbers that may be metres away from the unit and if heat rejection is required in the system it may also combine with an external cooling tower or closed-circuit fluid cooler. The heat exchanger for the pool is separate again from the unit and may be metres away in the plant room. The pool water never comes into contact with the heat pump in these systems.

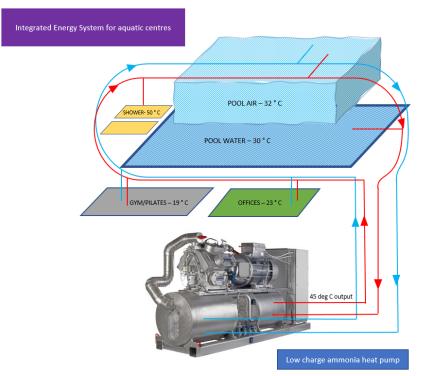


Figure 12 Integrated System Overview

LCA heat pumps provide a constant source of high-grade heat at around 45°C. It is possible to heat a few pools from the one heat pump by simply varying the flow of heated water through a heat exchanger for each pool as the heat pumps can easily provide 'lift' that is 10°C or more for pool water.

To make the system even more efficient a thermal storage tank can be used that will reduce the running time of the unit in a day by buffering the demand for water from the various pools. This allows the heat pump to stay in an **ideal operating range** more of the time it is operating further increasing the efficiency of the unit.

B. Background information on Heat Pumps

V. Understanding COP

The efficiency of a heat pump is measured by its **Coefficient of Performance** (COP). A COP of 5 equates to 500% efficiency, providing 5 units of heat (or cooling) for each unit of electricity consumed –its running cost is a fifth of a resistive electric heater (e.g. a fan heater). The best commercial building chillers claim remarkable seasonal (Integrated Part Load Value) COPs of 9.5 to 11 (e.g. http://www.smardt.com/AU-EN/prod_water_cooled.aspx).

If you require both heating and cooling at the same time, or you can store warm water or cold water for later use to make the average efficiency even higher, both the cold and hot side of the heat pump can provide useful energy that can be stored for later use.

The COP of a heat pump is not fixed: The COP *varies* with the temperature of the water or air that is supplying the heat pump. If you have spare heat or cold available, feeding this into the heat pump makes it even more efficient as there is less work to do: less 'lift' is required.

In Figure 13 that the COP of gas boilers does not vary with temperature; however, the COP of heat pumps will increase with the temperature supplying the cold side of the heat pump. The COP can be very high as you get closer to the target temperature, and this needs to be considered carefully when designing systems around LCA heat pumps as holding heat pumps in their optimal range can produce remarkable efficiencies.

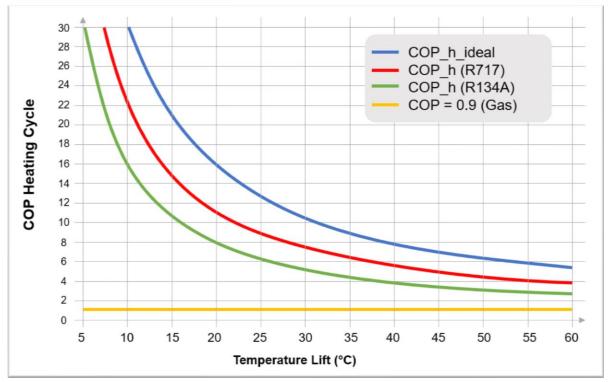


Figure 13: The change of COP with inlet temperature

VI. Coefficient of Performance (COP) calculation

Table 7 shows an extract from the Load Tables and shows how we matched the relevant heating and cooling COP against the **ambient** inlet temperature for Richmond. The COP was then recalculated into 0.1°C increments and matched against the **actual** temperature for the site for each hour over one year.

The maximum ambient inlet temperature used by the system is set at 30°C. The maximum inlet temperature is controlled by the heat absorber which cools the inlet temperatures during the summer months.

The heat pump output for both hot and cold was then calculated and matched against the heating and cooling load for each hourly period. The resulting data was then plotted to see if the heat pump had the capacity to cover the load comfortably over the full year.

Year	Time	HP Heat Load	Richmond Vic Ambient	Ambient Inlet Temperature to 30C° MAX!	Heating COP	Heat Pump Electricity Consumption	Cooling COP
2019	Time	kW	°C	°C	Match	kW	Match
1 - Jan 19	1:00 AM	84.01	24.5383	24.5	6.6265	12.68	5.669
1 - Jan 19	2:00 AM	84.01	24.3276	24.3	6.5937	12.74	5.641
1 - Jan 19	3:00 AM	93.37	24.1702	24.2	6.5773	14.20	5.627
1 - Jan 19	4:00 AM	93.37	24.0324	24.0	6.5449	14.27	5.599
1 - Jan 19	5:00 AM	177.32	24.0029	24.0	6.5449	27.09	5.599
1 - Jan 19	6:00 AM	158.60	24.7024	24.7	6.6597	23.81	5.697
1 - Jan 19	7:00 AM	378.96	26.8779	26.9	7.0465	53.78	6.035
1 - Jan 19	8:00 AM	341.12	29.027	29.0	7.4580	45.74	6.441
1 - Jan 19	9:00 AM	293.75	31.1465	30.0	7.6700	38.30	6.680
1 - Jan 19	10:00 AM	274.65	33.2941	30.0	7.6700	35.81	6.680

Table 7: COP Matching Example

The inlet/ambient temperature will necessarily be increased in the winter from the heat recovered from the Pool Hall exhaust and possibly the backwash water. This improves the heat pump capacity and efficiency in the winter. The efficiency gains are shown in Table 3 as the inlet temperature rises. This was not taken into consideration in the calculations.

Table 8: COP Efficiency Increase

Inlet Temp		Output D	uties, kW		СОР		
	Model	Heating	Cooling	Hot	Cold	Total	Increase in Efficiency
0		405	316.7	3.64	2.84	6.48	
5	108L	494.6	392.6	4.02	3.19	7.21	18.12%
10	010	614.9	498	4.57	3.7	8.27	19.56%
15	AC	740	613.2	5.28	4.37	9.65	16.91%
20	atF	872.3	734	5.91	4.97	10.88	15.17%
25	HeatP	1,017	870.6	6.71	5.74	12.45	14.23%
30		1,181	1,028.70	7.67	6.68	14.35	13.89%

VII. Gas types

Table 9 shows the different types of refrigerants as shown in Figure 13 (and others)

Refrigerant	Type	GWP	Scheduled for phase down
R410a	HFC	2,088	Yes
R407c	HFC/HFO	1,774	Yes
R404a	HFC/HFO	3,922	Yes
R134a	HFC	1,430	Yes
R143a	HFC	4,300	Yes
R22	HFC	1,810	Yes (phased out)
R32 (new)	HFC	675	Yes
R744 CO ₂	CO ₂	1	No
R717 NH3	Ammonia	0	No

VIII. Why GWP is so important

The global RACHP (Refrigeration Air Conditioning and Heat Pump) industries are facing unprecedented change over the next two decades. In some jurisdictions these changes started taking place more than two decades ago driven by local environmental legislation. The global technology transition will accelerate over the coming five to ten years, but the industry must prepare now for continuing technology evolution beyond 2040.

This technology transition is driven by two major events that took place in October 2016. These are the Kigali Amendment to the Montreal Protocol and the Paris Climate Treaty, which has now been ratified by a large number of developed economies (more than eighty) across the World. At least one nation (Norway) has responded by **banning fossil fuels** for space heating effective 2020.

The global hydrofluorocarbon (HFC) refrigerants phase-down that commenced in 2019 in accordance with the Kigali Amendment (in Australia it started January 2018), is much more than a refrigerant transition. The refrigerant transition must at the same time consider the Paris Climate Treaty targeting a maximum temperature anomaly of 2K by the year 2100 and carbon neutrality by 2050. In practice, this not only means minimisation of HFC use. It also means maximisation of energy efficiency at the same time.

Direct emissions from leak-tight HFC refrigerant based refrigeration plants represent approximately 10% of total emissions over the life of the plant [Velders et al - 2015]. The balance of 90% is caused by indirect emissions when these refrigeration systems are driven by electricity generated by means of combustion of fossil fuels. There are low global warming potential (GWP) synthetic refrigerant alternatives to HFC refrigerants. These are often referred to as 4th generation refrigerants and they generally belong to the hydrofluoroolefin (HFO) category or derivatives thereof. The environmental impacts of HFO refrigerants are underexplored.

In addition, HFO refrigerants offer no improvements in cycle efficiency compared with natural refrigerant alternatives. The longevity of HFO refrigerants as long term, future proof working fluids is therefore questionable [Prof. Dr. Ing. Habil. Michael Kauffeld]. With very few exceptions, low GWP synthetic working fluids are flammable. This is a feature shared with natural refrigerants such as ammonia and hydrocarbons. The proliferation of flammable refrigerants will increase the focus on refrigerant inventories of individual systems. This development is already evident in many jurisdictions and industry sectors.

This is particularly the case in jurisdictions where refrigerant inventories beyond certain limits trigger costly compliance measures for refrigeration plant owners/users. The focus on minimisation of system refrigerant inventories causes a phenomenon often referred to as multiplexing. Multiplexing is when a relatively large number of small/smaller systems combined deliver sufficient cooling capacity to refrigerate or cool a large facility that could otherwise have been cooled or air conditioned by means of a central plant of identical capacity to the sum of the individual system capacities.

Examples of such multiplexed concepts are:

- 1) Several hundred split air conditioning systems servicing multi-storey apartment buildings
- 2) Large numbers of air-cooled roof top units servicing temperature controlled industrial facilities
- 3) several CO₂ based trans critical systems servicing a retail or distribution facility

If multiplexed systems cannot deliver equal to or better energy performances overall than equivalent central plant, they violate the intent of the Paris Climate Treaty unless these systems are supplied with electricity generated via renewable energy sources eliminating indirect emissions.

In this context, centralized reticulated chilled water air conditioning plant employing minimal inventories of NH₃ refrigerant present themselves as potentially superior solutions both in terms of energy efficiency, but also in terms of safety, future proofing, industry knowledge and environmental acceptability. The operating NH₃ inventories in mid-capacity range (500-1000 kW cooling capacity) water chillers range from 0.03 to 0.05 kg/kW. For larger capacity chillers, the specific NH₃ inventories are often even less.

Ammonia is self-alarming. The odour of ammonia is detectable by the human nose at concentrations from 3 to 5 ppm by volume in air. The ammonia concentration needs to be around 100 times higher than that concentration to present a risk to humans (IDLH or Immediate Danger to Life and Health value for NH_3 is 300 ppm). Ammonia belongs to flammability category 2L (same as R32 and HFO1234yf). Ammonia is in widespread use for applications other than refrigeration. Its refrigeration applications are covered by mature and well-developed technical/safety standards and it is often referred to as '**the other hydrogen'** being the only fuel other than pure hydrogen that combusts without emitting CO_2 .

C. LCA Heat Pump Sizing, Choice and Efficiency

IX. Type of heat pump (ChillPAC vs HeatPAC)

It may sound counterintuitive but, in many instances, ChillPACs are a better option to heat a pool and the surrounding Pool Hall and ancillary areas. This is because ChillPACs feature oil separators integrated into the condenser and are therefore cheaper than the equivalent HeatPAC. A design constraint on the ChillPAC units **precludes** the use of a desuperheater which does not allow production of hot water for showers if that function is required. However, if DHW heating is required, a HeatPAC and desuperheater (which only can be fitted to Sabroe 108L configured as HeatPACs) would be the suitable option.

Scantec will design and specify the best system based on the specific environmental and performance criteria that is required for the site.

Difference between a ChillPAC and a HeatPAC

The difference is that ChillPACs have an oil separator built **into** the condenser. This makes it difficult, if not impossible to fit a shell-and-tube-type desuperheater in the discharge line. A HeatPAC has the oil separator fitted outside the condenser immediately upstream of it so to eliminates that problem.

Use and purpose of the desuperheater

A desuperheater is fitted immediately downstream of the compressor and upstream of the condenser. The desuperheater cools the superheated refrigerant leaving the compressor from the discharge gas temperature to a temperature approximately 5K above the refrigerant saturation temperature in the condenser. This cooling of the superheated refrigerant makes it possible to heat the coolant on the cold side of the desuperheater to temperatures that approach the compressor discharge gas temperature. Without a desuperheater, the superheated discharge gas simply enters the condenser where it is cooled until it reaches the condensing temperature at which point it starts to condense. Condensation takes place at a constant temperature. Note, that the water flow in the desuperheater is significantly lower than in the water-cooled condenser of the same system. Due the small size of the desuperheater, equating for approximately 6-8% of total heat pump output, it won't increase the condenser temperature of the heat which would reduce the COP. If the same water stream leaving the condenser would enter the desuperheater, the 'pinch point' in the condenser would prevent the coolant in the desuperheater from approaching the compressor discharge gas temperature.

X. Inlet temperatures

Inlet temperatures to the Heat Pump are the single most critical factor in determining their efficiency. In this example we have used ambient air as the inlet temperature with a limit of 30°C controlled by the heat absorber. If we use recovered heat to increase the inlet temperature, then the efficiency only increases.

XI. System Sizing

In the heat load evaluation program that SmartConsult has developed, we tested the sizing of the $2 \ge 108$ L and $2 \ge 112$ L heat pumps against the heat load over a full year from the data provided by the council. The results from this show that using the weather data as the inlet temperature for the heat pumps, the two Sabroe 108L heat pumps configured as HeatPACs and fitted with desuperheaters have enough capacity for the heating and cooling loads at the Richmond Recreation Centre.

The type and size of the LCA heat pump configuration depends on the following:

- 1. Site location
- 2. Thermal resistance of the building
- 3. Heat Load Pool and Pool Hall and Ancillary structures
- 4. Heat Load Spa
- 5. Cooling Load
- 6. Shower capacity required
- 7. Power supply to the site

The HeatPAC 108L LCA heat pumps has been calculated to have sufficient capacity for the heating and cooling loads at the Richmond Recreation Centre. The installation would require two heat pumps for a combined heat output of 1,744 kW @ 20°C ambient inlet temperature or 3,363 kW @ 30°C ambient inlet temperature. This is **not reliant** on

the heat pumps having a low-grade heat source capable of delivering an inlet temperature of 4 to 6°C or higher to the cold side of the heat pump.

Heat pumps are more efficient as the temperature lift between the warm and cold side reduces. For a constant temperature on the warm side, water to water heat pumps work more efficiently as the inlet temperature to the cold side rises. Thus, the higher the temperature of the low-grade heat source is, the greater the heat pump efficiency (COP) will be.

Table 10 shows the range of COPs, kW output and Electricity consumption at different heat pump inlet temperatures.

Inlet Temp	Peak Electricity x 1		Peak Electricity x 2 Output Duties, kW		uties, kW	СОР		
	Model	Shaft Electricity, kW	Heat Pumps x 2	Heating	Cooling	Hot	Cold	Total
0		111.4	222.8	405	316.7	3.64	2.84	6.48
5	~	123.1	246.2	494.6	392.6	4.02	3.19	7.21
10	NA DA	134.6	269.2	614.9	498	4.57	3.7	8.27
15	eatP ₁ 108L	140.2	280.4	740	613.2	5.28	4.37	9.65
20	Hea 10	147.7	295.4	872.3	734	5.91	4.97	10.88
25	-	151.6	303.2	1,017	870.6	6.71	5.74	12.45
30		154	308	1,181	1,028.7	7.67	6.68	14.35

Table 10: LCA heat pump performance at varying inlet temperatures

Note: the inlet temperature of the heat pump is regulated to a maximum of 30°C.

Table 11 shows the lift on both the hot and cold sides in and out for the glycol loop from the heat pump.

Table 11: LCA heat pump input and outputs as inlet temperature varies

	Cold S	ide, °C	Hot Sie	de, °C
Inlet Temp	In	Out	In	Out
0	-3	-8	40	45
5	2	-3	40	45
10	7	2	40	45
15	12	7	40	45
20	17	12	40	45
25	22	17	40	45
30	27	22	40	45

XII. Heat exchangers

The lower temperature of the water being handled by the heat pumps (down from 80 °C in a gas system) requires larger flat plate heat exchangers to be installed. These units are sized according to the formula:

Q = K * A * LMTD where the approach is 5-7 °C.

These heat exchangers are usually much larger in size than the existing heat exchangers to allow for sufficient heat transfer to the pool water. More details on this type of heat exchanger is available in Appendix D.

To increase the efficiency of LCA heat pumps, a source of **low-grade heat** is invaluable. This has proven a difficult concept to grasp for centre owners who are accustomed to looking for heat sources for pools that are **at or above** the target temperature. Heat sources below these temperatures are often discarded as waste heat of no use in the centres.

XIII. Heat recovery and low-grade heat sources

Low grade heat may be available from the shower wastewater, the exhaust air condensed from the pool hall, the backwash tanks: anywhere that heat is being transferred within the building. This heat can be usefully employed to feed the inlet of the heat pumps and increase their efficiency. In this way, the overall energy efficiency of the building is increased.

During opening hours, the pool hall has air being circulated continually with air being rejected from the hall and fresh air being added to the hall. The rejected air has a relatively high-water content and water can be recovered from it, and the heat that the air contains can also be recovered. This is achieved by cooling of this rejected air (using surplus cold from the heat pump) as the air is rejected from the building. This heat can be used to heat up the incoming fresh air or be fed back into the heat pumps at the cold side inlet to increase their efficiency. The water temperature of a

buried water main is a minimum of 12°C in Melbourne in winter. This is a useful heat source at that time of the year and the refilling of backwash tanks provides an easily accessed source of heat for the centre. This also applies to top up water that the centre is consuming. A PVT system installed on the roof beneath the existing solar PV panels would also provide a very good source of low-grade heat during daylight hours as it can provide around **3 times** the thermal energy of the existing solar PV system's electrical energy.

XIV. Thermal storage

This can be used to buffer the integrated energy system in peaks of winter and summer. If the centre is using and storing large amounts of water for backwashing this water can also provide a low-grade heat source for the centre. When combined with a PVT system, a thermal storage system can bridge the gap in the energy cycle of the centre when solar electricity is not available and demand is high, as an integrated energy system can be boosted using low heat water to operate. Tanks can either be insulated polyethylene or high-density concrete and can be stored below ground to free up space around the building. Storing warm water is the **cheapest** form of energy storage available in Australia at present. In summer months, this storage can also be used to store cool water for the system.

Figure 14: 30,000L water storage tanks at Leisure Link, Geelong

XV. Heat Ranges and Heat Exchangers

An Integrated Energy System operates **at lower temperatures** than the equivalent gas heating or Cogen system. Typically, gas systems produce output water that is around 85-90°C however most of the pool heating requirement is around 30°C.

LCA heat pumps are bespoke to suit the needs of the centre they are designed for. The LCA heat pumps produce water at around 43°C to supply pools that have target temperatures around 30 to 35°C. Less work has to be done to raise the inlet temperature of the water to the operating temperature thus allowing higher efficiencies.

The sizes of the heat exchangers used for gas and LCA heat pumps are different due to the different operating conditions. The heat exchangers will be larger as they require more surface area to effectively transfer heat to the water due to the lower temperature differences. This is an engineering calculation that will be determined during the detailed design phase of the project. An example of a suitable heat exchanger is described in Appendix D.

XVI. Heat pump configurations

The installation would require 2 heat pumps to meet the combined heating and cooling required for the Richmond Recreation Centre.

Figure 15: Sabroe HeatPAC 108

The heat pump configuration uses ammonia as refrigerant and is designed for the best possible performance in a range of operating conditions using a small refrigerant charge and a limited footprint. The heat pumps would supply hot water for the pool at 43 °C and would also supply warm water for the air handling unit in the pool hall.

XVII. Heat Absorber

The heat pump is configured with a heat absorber (air cooler) capable of controlling the inlet temperatures to the cold side of the heat pump during the summer months to prevent compressor overload.

The cold side inlet temperatures to the heat pump can be boosted from heat harvested from the backwash tank and/or the pool hall water and heat recovery unit during the winter and at other times where boosting cold side temperatures is advantageous to improve COP.

This creates a low-grade heat source capable of boosting the inlet temperature by +3 - 4 °C above ambient or higher to the cold side of the heat pump during winter.

Initial investigations regarding the available heat recovery from the exhaust air from the pool hall is shown below. This information was derived from the daily top-up water volumes.

Figure 16: Example of a chilled air discharge evaporator

Month	Total Top-Up P/Day	Litres P/Day Recovered	Recoverable kW Power (Heat per month)
Jan	13,800	6,900	546
Feb	25,604	12,802	1,013
Mar	18,876	9,438	747
Apr	18,914	9,457	748
May	24,404	12,202	965
Jun	14,599	7,299	577
Jul	13,489	6,745	534
Aug	12,106	6,053	479
Sep	18,844	9,422	745
Oct	19,093	9,546	755
Nov	19,327	9,664	765
Dec	16,577	8,289	656
Totals	215,633	107,816	9,241
AVG.	17,969	8,985	711

It is assumed that half of the top-up water can be recovered with cooling coil(s) in the exhaust(s), then the average cooling capacity required is shown where 2500 kJ/kg is the approximate latent heat of water. This goes to the cold loop of the heat pump.

Heat pumps become more efficient as the temperature 'lift' between the warm and cold side reduces. For a constant temperature on the warm side, water to water heat pumps work more efficiently as the inlet temperature to the cold side rises. Thus, the higher the temperature of the low-grade heat source is, the greater the heat pump efficiency (COP) will be.

The COP of the 2 x 108L heat pumps at 0°C saturated suction temperature is **3.64** providing heating of 810 kW. This excludes auxiliary equipment and is based on compressor shaft power input of 222.8 kW. If the saturated suction temperature is raised to 6°C the 108L heat pump has a COP of **4.13** providing heating of 1008 kW. Both estimates are for a saturated condensing temperature of 43° C.

XVIII. Example Servicing Costs and reliability of LCA heat pumps

A tailored maintenance plan and cost will be formulated for the Richmond Recreation Centre after the system has been designed. **Note**: the system proposed for the Richmond Recreation Centre is of a different configuration so the maintenance cost will be estimated more accurately once the design is settled.

An example of typical costs can be seen if we refer to the costs charged to Logan council for their Admin building. Graham Taylor, Service Manager at Scantec Refrigeration Technologies reports that the servicing of the 2 chillers at the Logan City Council installation is as follows-

"The two compressor packages that are installed at Logan City Council to date have been operating basically trouble free with some minor repairs on equipment in the field that is not associated with the packages. Over this period of 9 years we have not added any refrigerant to the systems and there have been no leaks This plant has a SCADA system installed that allows for remote access to address any issues that may occur and monitor the system if required during adverse weather conditions.

This type of compressor has been installed in plants all over the world for well over 60 years and are still in operation today with improvements undertaken over the years. These older compressors are still in operation as they have been kept up to date with regular servicing. The availability of parts is not a problem as there has not been many changes to the parts design only making them more efficient and the newer parts are a direct replacement for the older parts. Looking at the Logan City Council chillers the basic operation costs are as follows-

- Annual servicing on each of the 2 compressors is \$2,589.31 including GST (This is for replacement of oil and oil filters gaskets and checking compressor safeties)
- Carrying out this annual service on the compressors for 9 years and each year we have carried out inspections of the discharge and suction values and springs in the heads of the compressors and to date, as the compressor packages have been operating well within their design conditions, the wear and tear on the compressor components is minimal.
- Next year these heat pumps would require a major service that would cost in the region of \$7,000.00 + GST each.
- Annual ammonia detector calibrations- 2 x \$530.60 including GST
- Monthly service \$440.00 including GST on 2 of the systems.

The newer version of the Sabroe compressor UNISAB (Controller) has a built-in monitoring system that looks at the operating conditions of the compressor and then adjusts the service schedule accordingly."

Service Item	Time interval	Annual cost
Annual Service fee	12 months	\$5178.62
Ammonia detection calibrations	12 months	\$1061.20
Monthly service fee	monthly	\$959.91
	Total	\$11,519.82*

Table 13: Summary of annual heat pump service costs

*Does not include water treatment

It should be noted that an Integrated Energy System does not utilise any other unitary HVAC equipment (such as HVAC and VRF packaged units) or hot water heating for showers. As such, there is no servicing required for this equipment in the building as it does not exist! This is a substantial saving in maintenance costs to owners over the life of the building.

XIX. LCA Heat Pump Power Supply

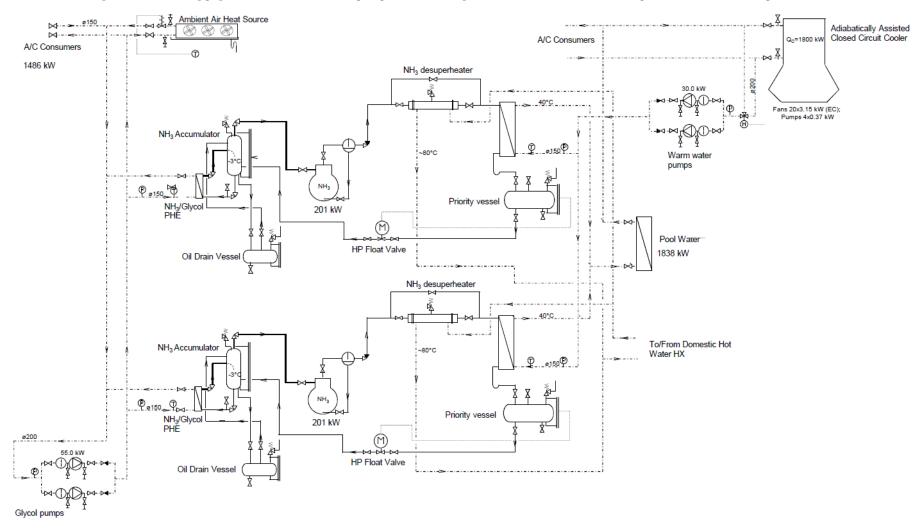
It is noted on the SLD as provided by the client that there is a 400 Ampere breaker at the MSB indicating that the supply to the site is approximately 287 KVA @ 0.9 Power Factor.

The Heat Pumps Max demand will be approximately 260 kW, plus \sim 15% to include auxiliary equipment, resulting in \sim 295 kW.

This together with the pool pumps and other building supply requirements suggest that the MSB supply will need to be upgraded to at least 500 kVA or 700 Amps.

XX. Power Factor Correction

It was noted during the analysis that an upgraded Power Factor Correction unit will provide additional savings on your electricity costs.


D. Sondex Heat Exchanger (Example)

E. Concept Design (HeatPAC Sabroe 112L)

Please note the design on the following page used Sabroe 112L Heat pumps which are larger than the Sabroe 108L in this report, however the concept is the same.

F. Energy Cost Breakdown

XXI. Current Electricity Cost per kWh, including Demand

Current Electri	icity Usage, Den	nand cost and co	st per kWh						
Metric	42%	58%	Sum	\$ 0.1548	\$ 0.1071	Sum	kVA	\$ 8.1058	Sum
Month	kWh peak	kWh Off-peak	Total kWh	Cost kWh peak	Cost kWh Off- peak	Total kWh Cost	Max Demand	Demand kVA	Total estimated Cost
Jan-19	24,114	33,595	57,710	\$3,733.37	\$3,597.60	\$7,330.97	195	\$1,580.63	\$8,911.60
Feb-19	22,105	30,795	52,900	\$3,422.22	\$3,297.77	\$6,719.98	195	\$1,580.63	\$8,300.62
Mar-19	22,526	31,382	53,908	\$3,487.43	\$3,360.61	\$6,848.04	195	\$1,580.63	\$8,428.67
Apr-19	19,452	27,100	46,553	\$3,011.61	\$2,902.09	\$5,913.69	195	\$1,580.63	\$7,494.32
May-19	20,472	28,521	48,994	\$3,169.51	\$3,054.25	\$6,223.77	195	\$1,580.63	\$7,804.40
Jun-19	22,376	31,174	53,550	\$3,464.29	\$3,338.31	\$6,802.61	195	\$1,580.63	\$8,383.24
Jul-19	22,439	31,261	53,700	\$3,473.99	\$3,347.66	\$6,821.65	195	\$1,580.63	\$8,402.28
Aug-19	22,374	31,170	53,544	\$3,463.90	\$3,337.93	\$6,801.83	195	\$1,580.63	\$8,382.46
Sep-19	21,917	30,534	52,451	\$3,393.18	\$3,269.79	\$6,662.97	195	\$1,580.63	\$8,243.60
Oct-19	26,655	37,135	63,790	\$4,126.70	\$3,976.62	\$8,103.32	195	\$1,580.63	\$9,683.95
Nov-19	22,491	31,334	53,826	\$3,482.10	\$3,355.47	\$6,837.57	195	\$1,580.63	\$8,418.20
Dec-18	21,801	30,372	52,173	\$3,375.21	\$3,252.47	\$6,627.68	195	\$1,580.63	\$8,208.31
Total	268,723	374,375	643,098	\$41,603.51	\$40,090.56	\$81,694.07	195	\$18,967.57	\$100,661.64

Ø \$ Per kWh Rate 0.15653

XXII. NEW Electricity Cost per kWh, including Demand

NEW Electrici	ty Usage, Dema	nd cost and cost	per kWh						
Metric	42%	58%	Sum	\$ 0.1548	\$ 0.1071	Sum	kVA	\$ 8.1058	Sum
Month	kWh peak	kWh Off-peak	Total kWh	Cost kWh peak	Cost kWh Off- peak	Total kWh Cost	Max Demand	Demand kVA	Total estimated Cost
Jan-19	27,235	37,943	65,178	\$4,216.53	\$4,063.19	\$8,279.72	500	\$4,052.90	\$12,332.62
Feb-19	23,220	32,349	55,569	\$3,594.87	\$3,464.14	\$7,059.02	500	\$4,052.90	\$11,111.92
Mar-19	28,316	39,449	67,765	\$4,383.90	\$4,224.47	\$8,608.37	500	\$4,052.90	\$12,661.27
Apr-19	34,767	48,436	83,203	\$5,382.58	\$5,186.84	\$10,569.43	500	\$4,052.90	\$14,622.33
May-19	45,556	63,467	109,023	\$7,052.98	\$6,796.49	\$13,849.47	500	\$4,052.90	\$17,902.37
Jun-19	47,795	66,587	114,382	\$7,399.65	\$7,130.56	\$14,530.21	500	\$4,052.90	\$18,583.11
Jul-19	54,379	75,759	130,139	\$8,418.98	\$8,112.82	\$16,531.80	500	\$4,052.90	\$20,584.70
Aug-19	53,691	74,801	128,492	\$8,312.46	\$8,010.17	\$16,322.63	500	\$4,052.90	\$20,375.53
Sep-19	47,901	66,734	114,634	\$7,415.96	\$7,146.27	\$14,562.22	500	\$4,052.90	\$18,615.12
Oct-19	36,975	51,512	88,487	\$5,724.41	\$5,516.24	\$11,240.65	500	\$4,052.90	\$15,293.55
Nov-19	33,789	47,073	80,862	\$5,231.15	\$5,040.92	\$10,272.07	500	\$4,052.90	\$14,324.97
Dec-18	32,796	45,690	78,485	\$5,077.39	\$4,892.75	\$9,970.14	500	\$4,052.90	\$14,023.04
Total	466,420	649,800	1,116,220	\$72,210.87	\$69,584.85	\$141,795.72	500	\$48,634.80	\$190,430.52

Ø \$ Per kWh Rate 0.17060

References

Duverge, J. (2019). Energy performance and water usage of aquatic centres.

Jensen, S. (2019). Real energy efficiency of DX NH₃ versus HFC.

- Fryer J. (2019). Heat pumps in aquatic centres. (Report)
- Pears, A. (2019). Heat Pumps: Application to Aquatic Centres. RMIT University

Sands, T. (2018). Understanding Swimming Pool Ventilation. (Presentation)